423-16-01

Data Production Software and
Science Computing Facility (SCF)
Standards and Guidelines

Revision A

October 1996

423-16-01

Data Production Software and
Science Computing Facility (SCF)
Standards and Guidelines

Developed by
Stan Scott S TP SE—
Interface Manager
GSEFEC - Code 586
Approved by:
Ken McDonald 7 S—

Science Outreach Manager
GSFC - Code 586

Arthur B. Obenschain Date
Associate Director for ESDIS Project
GSFC - Code 423

GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

Revision A . October 1996

CHO1

CHO1

CHO1
CHO1
CHO1

CHO1

CHO1

423-16-01

This page intentionally left blank.

Revision A G October 1996

423-16-01

CHANGE RECORD PAGE
Issue Date Pages Affected Description
Original 01/14/94 All Baseline
CHO1 02/15/95 i, i, iii, iv, 1, 5, 6, 7, 8, 9. 10, 11, 14 | CCR 505-01-16-001
16,17, 18
Rev A 10/15/96 All CCR 505-01-16-002-A
CHO1 03/27/98 i, iii, v, viii, x, 4-1 thru 4-2, 6-5, CCR 423-16-01-003
8-1, 8-2, A-2, A-6
Revision A October 1996

iii

423-16-01

This page intentionally left blank.

Revision A iv October 1996

LIST OF AFFECTED PAGES

423-16-01

Page No. Revision | Page No. Revision | Page No. Revision | Page No. Revision

Title Rev A 4-6 Rev A B-4 Rev A

i CHO1 5-1 Rev A AB-1 Rev A

ii Rev A 5-2 Rev A AB-2 Rev A
iii CHO1 6-1 Rev A
iv Rev A 6-2 Rev A
\Y CHO1 6-3 Rev A
vi Rev A 6-4 Rev A
vii Rev A 6-5 CHO1
viii CHO1 6-6 Rev A
ix Rev A 7-1 Rev A
X CHO1 7-2 Rev A
1-1 Rev A 8-1 CHO1
1-2 Rev A 8-2 CHO1
2-1 Rev A A-1 Rev A
2-2 Rev A A-2 CHO1
3-1 Rev A A-3 Rev A
3-2 Rev A A-4 Rev A
3-3 Rev A A-5 Rev A
3-4 Rev A A-6 CHO1
4-1 CHO1 A-7 Rev A
4-2 CHO1 A-8 Rev A
4-3 Rev A B-1 Rev A
4-4 Rev A B-2 Rev A
4-5 Rev A B-3 Rev A

Revision A

October 1996

423-16-01

This page intentionally left blank.

Revision A vi October 1996

423-16-01

CONTENTS

Change Record Page
List of Affected Pages

1. Introduction

1.1 INErOAUCHION .ttt ettt et b sttt 1-1
1.2 SCOPE ittt 1-1
1.3 AUEOTItY s 1-1
T4 VAV eI S ittt ettt s bttt st sa et et b et s et e bt et e s it e nbeea 1-1
1.5 Extensions of Standards.........ccoceeeeiierieiiiniieieeeeeeeeee e 1-2
1.6 Off -The-Shelf, Third-Party Software POLCY.........cccccovuviiiuriniiniiiiciiriceens 1-2
1.7 Related DocuUmMeNntationcccceveveriririiieieesieseeestee ettt 1-2
2. SCF Standards and Guidelines
21 SCEF HaTAWATEcviiieiiiiieieeteeitee ettt sttt sttt s e b st sae s 2-1
21.1 0T =3 o SRR 2-1
2.1.2 SEANAATAS. . oiciiiiiceeeeeee e et ba e aaa s 2-1
2.1.3 GUIAEIINES.eeciiieieeeeeeeee ettt et ae e e be e raeeaeessaeesaesnaaas 2-1
2.2 SCF Communications (Deleted).......cccooiouiviiiiiiiiiieeeeeeeeeeeeeeee et 2-1
P0G T ST G T o i 2= SRRSO 2-1
2.3.1 INE@Nt e e 2-1
2.3.2 SANAATAS....eeieieiiieee et 2-1
2.4 SCEF SECUTILY wouvvvieiiiietetiieetcie ettt 2-1
24.1 NNt 2-1
242 GUIAEIINES. ...ttt sttt st enees 2-2
3. Data Production Software Standards and Guidelines
for the C Language
3.1 IEEIIE ettt ettt et st 3-1
3.2 SANAATAS oottt st sttt tes 3-1
Revision A . October 1996

Vil

423-16-01

3.2.1 Comply with ANSI Standardccccceeiininiiceniiccccercen, 3-1
322 Use SDP Toolkit Calls.........ccccvviiiiiiiiiiiiiiiiiciiciccce, 3-1
3.3 GUIAEINES ettt ettt et sttt et ees 3-1
3.3.1 ANST Checking.......cccueuriiieieieiniiieeierieeieseeseteese s esasaesens 3-1
3.3.2 File INCIUSIONcooiiiiiiiiiiiiciic s 3-1
3.3.3 Initialize Variables.........ccoooiiiiiiiiiiiiii 3-1
3.3.4 Order Declarations...........ccoociiviniiiininiiciiciceccecas 3-2
3.3.5 Naming Convention.......cic e 3-2
3.3.6 Integer Loop Control Variables..........ccccocoveieiiiiiiinniniiiiccccne, 3-2
3.3.7 AVOid GOTOS......ooiiiiiiiiic s 3-2
3.3.8 Consistent Style ... 3-2
3.3.9 Pointer TyPe ..o 3-2
3.3.10 Variable Value Retention ..., 3-2
3.3.11 Contiguous Use ASSUMPHION.....cccoviviiiiiiiiiiiiiicce 3-2
3.3.12 IMPLcit TYPe oo 3-3
3.3.13 Equality COmMPAariSOnSccceueveueinieiiiiiiiiiiieecec e, 3-3
3.3.14 Function Prototype ... 3-3
3.3.15 Void FUNCHONS.....cccciviiiiiiiiiicc s 3-3
3.3.16 Use “div” and “Idiv”ccccocovrmnininieininicccccccc s 3-3
3.3.17 ROUNAING .ottt 3-4
3.3.18 Exceeding ANSI C 32K Limit.....ccccceoiviinininiiiiiiiiiiicicccccne, 3-4
3.3.19 Exceeding ANSI C 6-Character Name Limit........cccocoeeeiecuereunrrnnennnes 3-4
3.320 Comply with POSIX Standardcccceviiiivinicininiicininicciccees 3-4
4. Data Production Software Standards and Guidelines
for the Fortran Language
41 INtent . 4-1
4.2 Standards ... 4-1
421 FORTRAN Compilercccccviiiiiiniiiiiiiiciiiiccicccceceeeee 4-1
422 Use SDP ToolKit CallS......coceeirierieriiniinieieieneeeeteiesesieeeet e 4-1
423 FORTRAN 77, Fortran 90, and SDP Toolkit Calls.........cccccccerueruennnens 4-1
4.3 GUIEIINES .o 4-1
43.1 FORTRAN EXtenSions.......cccccovvivininiiiniiininiiiiiininnncsncscss 4-2
432 Compatability with the next FORTRAN Standard............cccecevueeeeee 4-2
Revision A October 1996

viii

CHO1

423-16-01

433 Initialize Variables........cccooiiiiiiniiiiiiii 4-3
434 Order Declarations.........ccocciviiiiiiiiiiniiiiiiccce 4-3
4.3.5 PARAMETER Variables ..., 4-3
4.3.6 COMMON BIOCKS.....couimiiiiiiiiiiiiicciiceece e 4-3
43.7 Naming Convention..........ie 4-4
4.3.8 Integer Loop Control Variables............ccccooviiiiiinniiiiiicce, 4-4
439 AVOId GOTOS......ocuiiiiiiiiciccce s 4-4
43.10 Avoid Computed and Arithmetic GOTOSccccovuiueirivininiccirinicaes 4-4
4311 Terminate DO-l0OPS......ccccomimiiiiiiiiiiiiiiicc 4-4
43.12 Consistent Style ... 4-4
43.13 Equality CompariSOnsccceevieiiiiiiiniiiiiieiiiiccceccc e 4-4
43.14 Consistent Labeling.........ccccocoovviiiiiiiniiice 4-4
4.3.15 Generic Intrinsic FUNCHONS ..o 4-4
4316 ROUNAING ..ot 4-5
4317 Comply with POSIX Standardcccocvicirnicicninicircccceees 4-5
5. Data Production Software Standards and Guidelines
for the Ada Language

5.1 INteNt i 5-1

5.2 Standards ... 5-1
5.2.1 Comply with National Standardccccceveveeirnniecennccerrieees 5-1
522 Use SDP Toolkit Calls.......ccccoeirieinieinieiiiiinicieieieeeneineeseeeeeenenes 5-1
5.2.3 Prohibited SDP Toolkit Callscccorurueueuereieieiiininenireeieieieicicceneenen. 5-1
524 Ada Library SUPPOTtcccceiviiiiiiiiiccc 5-1

5.3 GUIAEINES ettt ettt 5-1
53.1 Avoid Platform-Unique Features.........cccccccoviiniinninniinincinnccne 5-1
53.2 Ada Style References...........ccoceveiiiiiniiiniiiniciniciicicicccce, 5-2

6. Module Identification Standard

0.1 INEENt i 6-1

6.2 Standards ... 6-1

0.3 EXAMIPLE..iiiiiiiiiiciii e s 6-1

7. Script Language Standard
71 INEENt e 7-1
Revision A . October 1996

1X

423-16-01

7.2 Standards ... 7-1
721 Shell Languages.........cccucucuricuriiuciricieiiicisicie i 7-1
722 Shell NAMES]....coviieieiriiiccientcetee ettt eacaesens 7-1
7.3 GUIAElINeS ... 7-1
7.3.1 Minimize Number of Script Languages...........ccccocevvvvnniinininnnnnne 7-1

7.3.2 Use Efficient Mixture of Compiled and Interpreted
Programming Languages..........ccccoeevieiinieininiiiniccnececceeeene 7-2

8. Guidelines for Use of Multiple Languages
8.1 FORTRAN 778nd CINerfacecuiuiiiii e 8-1 CHO1

Appendix A. ESDIS Policy Regarding Prohibited Functions in Science
Data Production Software

Appendix B. ESDIS Policy for Software Standards, Changes
and Waivers

Abbreviations and Acronyms

Revision A October 1996

423-16-01

Data Production Software and SCF Standards
and Guidelines

1. INTRODUCTION
1.1 PURPOSE

The purpose of these standards is, fundamentally, to avoid excess costs over the life
cycle of the Data Production Software. The standards contained in this document
are motivated by a need for maintainable and portable software.

1.2 SCOPE

The standards promulgated in this document apply to networked Science
Computing Facilities (SCFs) and data production software that will be delivered for
integration into the Data Processing Subsystem of the Earth Observing System (EOS)
Data and Information System (EOSDIS) Core System (ECS) at the Distributed Active
Archive Centers (DAACs). The scope of these standards explicitly excludes
prototype code or supporting software that may be used in building Data Production
Software but that will not be delivered to the DAAC.

The Project's policy for Earth Science Data and Information System (ESDIS) Science
Team prohibited functions is presented in Appendix A.

The standards in this document are mandatory. Standards statements always
include the word "shall". Guidelines found in this document are not
mandatory, but are included as recommendations. The guidelines always
include the word "should" or "may" in the statement.

1.3 AUTHORITY

This document is issued under the authority of the ESDIS Project (the Project). The
original standards were developed by the ESDIS Project with the assistance and
consensus of the Data Processing Focus Team (DPFT). The DPFT membership
included several representatives from EOS Data Production Software Developers
and DAACs.

1.4 WAIVERS

The Project may issue waivers to these standards for performance or heritage
software on a case by case basis.

The Project's policy for ESDIS Science Team standards and waivers is presented in
Appendix B.

Revision A 1-1 October 1996

423-16-01

1.5 EXTENSIONS OF STANDARDS

The Project anticipates that these standards may be extended in the future.

1.6 OFF-THE SHELF, THIRD-PARTY SOFTWARE POLICY

Existing off-the-shelf software from a third party (e.g., the Mcldas library,
MODTRAN,) are exempt from the module identification standard (Section 6). The
science team is responsible for ensuring correct compilation and execution of the
off-the-shelf software at the DAAC.

1.7 RELATED DOCUMENTATION

The following documents are referenced or contain policies or other matter that are
binding upon the contents of this document:

a.)

b.)

c.)
d.)

e.)
f.)

g.)

h.)

i)

Revision A

Functional and Performance Requirements Specification for the Earth
Observing System Data and Information System (EOSDIS) Core System,
GSFC 423-41-02, 16 February 1993

Interface Control Document between EOSDIS Core System (ECS) and
Science Computing Facilities (SCF), GSFC 505-41-33

SDP Toolkit Users Guide, GSFC 505-16-03, or superseding versions

Military Standard; Ada Programming Language, MIL-STD-1815A, 22
January 1983

Military Standard; FORTRAN, MIL-STD-1753, 9 November 1978

IEEE Standard for Information Technology, Portable Operating System
Interface (POSIX), Part 2: Shell and Utilities, IEEE Std 1003.2-1992

Programming Languages - C (revision and redesignation of ANSI
X3.159-1989), ANSI/ISO 9899-1990

American National Standard Programming Language FORTRAN,
ANSI X3.9-1978, ISO 1539-1980 (E)

American National Standard for Programming Language- Fortran-
Extended, ANSI X3.198-1992.

1-2 October 1996

423-16-01

2. SCF STANDARDS AND GUIDELINES
2.1 SCF HARDWARE
2.1.1 Intent

The intent of the SCF hardware standards is to control the number of versions of
the Science Data Production (SDP) Toolkit that the Project must support for the Data
Production Software teams.

2.1.2 Standards

2.1.2.1 SCF hardware shall be capable of running the software included in the
SCF Software Standards.
2.1.3 Guidelines

2.1.3.1 SCF hardware hosting the SDP Toolkit should be compatible with
hardware from the set of SDP Toolkit hosts established by the ECS
Contractor. The rational for this guideline is to facilitate portability.

2.1.3.2 SCF hardware should be from the same vendor family as the target
DAAC data processing computer. The rational for this guideline is to
facilitate portability.

2.2 SCF COMMUNICATIONS (DELETED)

2.3 SCF SOFTWARE
2.3.1 Intent

The intent of this standard is to ensure correct operation of the SCF-
DAAC interface.

2.3.2 Standards

2.3.2.1 SCFs shall have software that supports applicable network
protocols and mechanisms described in Section 4 of the ECS-SCF ICD.

2.3.2.2 SCFs that are used to order data from the DAAC shall have
software that provides the capability to use an ECS client.

2.4 SCF SECURITY

2.4.1 Intent

The intent of this guideline is to help establish minimum security requirements for
networked SCFs. More elaborate security may be imposed locally.

2.4.2 Guidelines

2.4.2.1 Multi-user SCFs should use system security with procedures to

Revision A 2-1 October 1996

Revision A

423-16-01

establish and maintain, as a minimum:

a.) Passwords,

b.) User Accounts,

c.) User Permissions.
2.4.22 All passwords on networked, multi-user SCFs should adhere to the
following:

a.) Passwords should consist of 6 or more characters, including at
least one numeric or "special" character (such as a space or
asterisk);

b.) Passwords should not be the user's login name, or circular shift
of that name.

2.4.2.3 A password aging scheme should be employed, to force users to
change passwords periodically (e.g., every 90 days).
2.4.2.4 The System Administrator of networked SCFs should:

a.) Reset all factory-set passwords immediately;

b.) Disable the Guest account;

c.) Either omit the Anonymous FTP account or restrict it to a
specific directory;

d.) Assure the initial password for a new account is not a forename-
surname or other usage of the user name;

e.) Minimize distribution of the root password.

2.4.2.5 The System Administrator of networked, multi-user SCFs should:

a.) Establish groups for users with read and execute permissions for
group members;

b.) Remove global read/write access to any files which are not for
public view;

c.) Remove global execute access to any directory which is not for
public access.

2.42.6 The command ".netrc" should not be used (It would allow login
without a password).

2-2 October 1996

423-16-01

3. DATA PRODUCTION SOFTWARE STANDARDS AND GUIDELINES FOR THE
CLANGUAGE

3.1 INTENT

The intent of this standard is to facilitate portability of data production software and
to control costs at the DAACs.

3.2 STANDARDS

The mandatory coding standards for data production software generated in the C
language follow.

3.2.1 Comply with ANSI Standard

The software shall comply with the ANSI standard specification for C (ANSI ISO
9899-1990). Vendor specific extensions to the standard shall not be used. The
rationale for this standard is portability.

3.2.2 Use SDP Toolkit Calls

External calls from the operational data production software in the DAAC, for
system and resource accesses, file I/O requests, error message transaction, and
metadata formatting, shall be made through SDP Toolkit calls. The software shall
comply with the restrictions found in Appendix A. Data production software
delivered to the DAAC shall be fully interoperable with the SDP Toolkit installation
at the DAAC. The rationale for this standard is portability as well as having one
group develop this code instead of all science teams duplicating the development
effort.

3.3 GUIDELINES

3.3.1 ANSI Checking

It is strongly recommended that code be compiled by the IT at the SCF with the
ANSI checking option on. The rationale for this guideline is portability.

3.3.2 File Inclusion

The <> and "" notation should be used for including standard C header files and
programmer created header files, respectively. The rationale for this guideline is
maintainability.

3.3.3 Initialize Variables

All variables should be initialized prior to use (except for static variables), i.e. no
assumptions should be made that variables are initialized to zero. The rationale for
this guideline is portability.

Revision A 3-1 October 1996

423-16-01

3.3.4 Order Declarations

Declarations should be ordered consistently throughout the code. An
example of a consistent order is:

a.) declaration of module arguments in the same order as the argument list
(before the opening brace of the function),

b.) declaration of external variables,
c.) declaration of local variables,
d.) declaration of functions used.
The rationale for this guideline is maintainability.
3.3.5 Naming Convention

A consistent and descriptive naming convention should be adopted. The
rationale for this guideline is maintainability.

3.3.6 Integer Loop Control Variables

Loop control variables should be of INTEGER type. The rationale for this guideline
is portability. Note: This guideline includes the subtypes of integer, such as char,
short, long, etc.

3.3.7 Avoid GOTOs

Unconditional branching (GOTO) should only be used within nested structures and
should only reference a label further down in the code. The rationale for this
guideline is maintainability.

3.3.8 Consistent Style

Use a consistent style to highlight code structure and increase readability. The
rationale for this guideline is maintainability.

3.3.9 Pointer Type

A pointer should have the same type as the variable it points to. The rationale for
this guideline is portability.

3.3.10 Variable Value Retention

Static variables are guaranteed to retain their value between module calls; all other
variables in a module should be assumed to be undefined for each access of a
module. External variables also retain their values between module calls. The
rationale for this guideline is portability.

3.3.11 Contiguous Use Assumption

Contiguous use of memory by arrays should not be assumed. The rationale for this
guideline is portability.

Revision A 3-2 October 1996

423-16-01

3.3.12 Implicit Type

Avoid implicit type casts. The rationale for this guideline is portability. Note: C
language processors will generate code to cast between the types on the left and right
side of an assignment operator, but reliance on this implicit type conversion is not a
good idea. The programmer should include explicit type casts:

long integer_variable;

long * integer_pointer;

double floating_point_variable;

integer_pointer = &integer_variable; /* per guideline */
integer_pointer = &floating_point_variable; /* contrary to guideline */

integer_variable = (long)floating_point_variable; /* per guideline */
3.3.13 Equality Comparisons

Float and double variables should not be compared for strict equality (i.e., using ==
or !=). The rationale for this guideline is portability.

3.3.14 Function Prototype

All functions should be typed (and preferably prototyped). The rationale for this
guideline is maintainability. Note: the use of function prototypes significantly
reduces interface errors in C. A function prototype tells the compiler the type of the
function and the number and types of the arguments. An example follows:

int GreatestCommonDenominator(int large_term; int small_term);
3.3.15 Void Functions

Functions which do not return a value should be typed as void. The rationale for
this guideline is maintainability.

3.3.16 Use "div" and "ldiv"

The div and 1div functions in the C Standard Library should be used to obtain
consistent values of remainders when the quotient is negative. The rationale for
this guideline is portability, since the C language definition does not specify how to
handle this situation, and at least two answers are possible. Note: in general static
analysis cannot ensure that the quotient will never be negative so the library
functions should be used instead of the % operator.

3.3.17 Rounding

Revision A 3-3 October 1996

423-16-01

The correct functioning of code should not depend on the rounding behavior of
converting a long double to other floating types or double to a float. The rationale
for this guideline is portability.

3.3.18 Exceeding ANSI C 32K Limit

Data objects (arrays or structures), of a size greater than the limit in ANSI C of 32K
for data objects, may be used.

3.3.19 Exceeding ANSI C 6-Character Name Limit

External names, of a size greater than the limit in ANSI C of 6 characters, may be
used.

3.3.20 Comply with POSIX Standard

The source code should comply with IEEE Standard 1003.1, POSIX-Part 1: System
Application Program Interface (API) [C Language]. The rationale for this guideline is
portability.

Revision A 3-4 October 1996

423-16-01

4. DATA PRODUCTION SOFTWARE STANDARDS AND GUIDELINES FOR THE
FORTRAN LANGUAGE

4.1 INTENT

The intent of this standard is to facilitate portability of data production software and
to control costs at the DAACs.

4.2 STANDARDS

The mandatory coding standards for data production software generated in the
FORTRAN language follow.

4.2.1 FORTRAN Compiler
The FORTRAN compiler standard consists of the following parts:

a.) Science data production software shall comply with the ANSI
standard specification for FORTRAN 77 (ANSI/X3.9-1978) or for
Fortran 90 (ANSI X3.198-1992).

b.) Heritage FORTRAN 66 code shall be made to compile using
FORTRAN 77 or Fortran 90 prior to delivery to the DAAC. The
rationale for this standard is portability.

4.2.2 Use SDP Toolkit Calls

External calls from the operational data production software in the DAAC, for
system and resource accesses, file I/ O requests, error message transaction, and
metadata formatting, shall be made through SDP Toolkit calls. Data production
software delivered to the DAAC shall be fully interoperable with the SDP Toolkit
installation at the DAAC. The rationale for this standard is portability as well as
having one group develop this code instead of all science teams duplicating the
development effort.

4.2.3 FORTRAN 77, Fortran 90, and SDP Toolkit Calls

The FORTRAN 77 software shall comply with the restrictions found in
Appendix A.

FORTRAN 77 code shall use only those SDP Toolkit calls that provide
capabilities found in the FORTRAN 77 language. The rationale for this
standard is that there will be no FORTRAN 77 bindings for SDP Toolkit
capabilities requiring unique Fortran 90 features.

4.3 GUIDELINES

The first guideline are the extensions to the FORTRAN 77 and Fortran 90 languages
that follow. The FORTRAN 77 extensions were largely permitted

Revision A 4-1 October 1996

CHO1

423-16-01

prior to the development of the ESDIS waiver policy and are considered as an EOS
community waiver.

4.3.1 FORTRAN Extensions CHO1
The following extensions to FORTRAN 77 may be used:

a.) INCLUDE statement (MIL-STD-1753, Section 2.3),
b.) BYTE data type,
c.) DO WHILE (MIL-STD-1753, Section 2.2),
d.) ENDDO (MIL-STD-1753, Section 2.1),
e.) STRUCTURE data types,
f.) names up to 31 characters in length,
g.) IMPLICIT NONE statement (MIL-STD-1753, Section 2.4),
h.) (deleted) CHO1
i.) in-line comments,
j.) extended character set to include lower case letters, underscore ("_"), left
and right angle bracket ("[" and "]"), quotation mark ("), exclamation point
("1"), percent sign ("%"), and ampersand ("&"), and tab character, CHO1
k.) initialization of data in declaration,
1.) long line extensions beyond 72 characters per line.
m.) bit manipulation (MIL-STD-1753, Section 2.6), including: Inclusive OR,
Logical AND, Logical Complement, Exclusive OR, Logical Shift, Circular
Shift, Bit Extraction, Bit Move, Bit Testing, Set Bit, Clear Bit, and Bit
Constants,
n.) EXIT ().
0.) INTEGER*N and REAL*M, where N and M are integers permitted by DAAC CHo1
compilers
The ESDIS Project will attempt to procure FORTRAN 77 compilers for the DAACs
that permit the above extensions to the ANSI standard language, but the DAAC
compiler acceptance of these extensions can not be guaranteed. Those science teams
possessing heritage code that uses most of these extensions may wish to consider
converting the code to use a Fortran 90 compiler. The FORTRAN 77 language and
several extensions are a subset of the Fortran 90 language.

The following extensions to Fortran 90 may be used:

a.) INTEGER*N and REAL*M, where N and M are integers permitted by DAAC CHO1
compilers,

b.) tab character.
The ESDIS Project will attempt to procure Fortran 90 compilers for the DAACs that permit the

above extensions to the ANSI standard language, but the DAAC compiler acceptance of these
extensions can not be guaranteed.

4.3.2 Compatibility with the next FORTRAN Standard

Any constructs and features of the Fortran 90 language that are marked for removal
in the next release of the FORTRAN standard should not be used (ANSI X3.198-
1992, Section 1.6 & Annex B):

Revision A 4-2 October 1996

423-16-01

a.) Arithmetic IF.

b.) Real and double precision DO control variables and DO loop control
expressions.

c.) Shared DO termination and termination on a statement other than END
DO or CONTINUE.

d.) Branching to an END IF statement from outside its IF block.
e.) Alternate Return.

f.) PAUSE statement.

g.) ASSIGN and assigned GO TO statements.

h.) Assigned FORMAT specifiers.

e.) cH edit descriptor.

4.3.3 Initialize Variables
All variables should be initialized prior to use. The rationale for this guideline is
portability.

4.3.4 Order Declarations
Declarations should be ordered consistently throughout the code. An
example of consistent ordering is:

a.) declaration of module arguments in the same order as the argument list,
b.) declaration of global variables in COMMON (using INCLUDE files),
c.) declaration of local PARAMETERSs (types and values),
d.) declaration of local variable types,
e.) declaration of user defined function types used,
f.) EXTERNAL declarations,
g.) INTRINSIC declarations,
h.) declaration of DATA values.
The rationale for this guideline is maintainability.

4.3.5 PARAMETER Variables

PARAMETER variables should not be redefined. The rationale for this guideline is
maintainability.

4.3.6 COMMON Blocks

Revision A 4-3 October 1996

423-16-01
COMMON blocks should be inserted into the code using INCLUDE. The rationale
for this guideline is maintainability.
4.3.7 Naming Convention

A consistent and descriptive naming convention should be adopted. The
rationale for this guideline is maintainability.

4.3.8 Integer Loop Control Variables

Loop control variables should be of INTEGER type. The rationale for this guideline
is maintainability.

4.3.9 Avoid GOTOs

Unconditional branching (GOTO) should only be used within nested structures.
The rationale for this guideline is maintainability.

4.3.10 Avoid Computed and Arithmetic GOTOs

Computed and arithmetic GOTOs should not be used. The rationale for this
guideline is maintainability.

4.3.11 Terminate DO-loops

DO-loops should be terminated with CONTINUE or ENDDO. The index of a DO-
loop should always be of integer type, and the index should not be modified inside
the loop. The rationale for this guideline is maintainability.

4.3.12 Consistent Style

Use a consistent style to highlight code structure and increase readability. The
rationale for this guideline is maintainability.

4.3.13 Equality Comparisons

Real and complex variables should not be compared for strict equality (i.e., using
.EQ. or .NE.). The rationale for this guideline is portability.

4.3.14 Consistent Labeling

A consistent labeling scheme should be used. The rationale for this guideline
is maintainability.

4.3.15 Generic Intrinsic Functions

Generic intrinsic functions should be used rather than type specific functions. The
rationale for this guideline is portability.

Revision A 4-4 October 1996

423-16-01

4.3.16 Rounding

The correct functioning of code should not depend on the rounding behavior of
converting a DOUBLE PRECISION or COMPLEX to other floating types. The
rationale for this guideline is portability.

4.3.17 Comply with POSIX Standard

The FORTRAN 77 source code should comply with IEEE Standard 1003.9, POSIX
FORTRAN 77, Language Interfaces, Part 1: Binding for System Application Program
Interface (API). The rationale for this guideline is portability.

Revision A 4-5 October 1996

423-16-01

This page intentionally left blank.

Revision A 4-6 October 1996

423-16-01

5. DATA PRODUCTION SOFTWARE STANDARDS AND GUIDELINES FOR THE
ADA LANGUAGE

5.1 INTENT

The intent of this standard is to facilitate portability of data production software and
to control costs at the DAACs.

5.2 STANDARDS

The following are the list of mandatory standards for data production software
generated in the Ada language:

5.2.1 Comply with National Standard

The software shall comply with the national standard specification for Ada (MIL-
STD-1815-A). The rationale for this standard is portability.

5.2.2 Use SDP Toolkit Calls

External calls from the operational data production software in the DAAC, for
system and resource accesses, file I/O requests, error message transaction, and
metadata formatting, shall be made through SDP Toolkit calls. The Pragma
Interface Statement shall be used to interface with all commercial library software
provided as part of the SDP Toolkit. Ada bindings for the SDP Toolkit will not be
developed and it is the software developer's responsibility to utilize the FORTRAN
or C version of the SDP Toolkit correctly. The rationale for this standard is
portability as well as having one group develop this code instead of all science teams
duplicating development effort.

5.2.3 Prohibited SDP Toolkit Calls

The delivered code shall not make SDP Toolkit calls from within Ada tasks. The
rationale for this standard is operability and maintainability.

5.2.4 Ada Library Support

There are no Ada libraries supported. All software shall be delivered in source code
form.

5.3 GUIDELINES
5.3.1 Avoid Platform-Unique Features

Since Chapter 13 of MIL-STD-1815-A deals specifically with features for adapting Ada
to platform-unique features, Chapter 13 features should be used with care. Such
code should be isolated as much as possible and commented extensively to make the
task of porting to a new host as easy as possible.

Revision A 5-1 October 1996

423-16-01

5.3.2 Ada Style References

There are references for the production of good Ada code. The following reference
might be useful in developing local coding guidelines and styles:

Seidewitz E., et al., Ada Style Guide, Version 1.1, GSFC SEL 87-002, 1987.

Revision A 5-2 October 1996

423-16-01

6. MODULE IDENTIFICATION STANDARD
6.1 INTENT

Module Identifications are needed to assist in the Science Software Integration and
Test (SSI&T) process at the DAAC.

6.2 STANDARDS

To allow identification of individual items of code, a header (prolog), as defined
below, shall be inserted at the top of each module in the Fortran, C or Ada
production software. A module is a main program, subroutine, procedure,
function, etc. This header shall also be included at the top of insert/include files,
with the exception that the blocks relating to input and output parameters are
omitted. Note: The example uses the C language style of comments, and would
need to be converted for other languages. All entries preceded with "!" are
mandatory with the exceptions: 1) of "lTeam-unique Header:" if there is no team-
unique header; and 2) of "lInput/Output Parameters:" if there are none of them in
the module.

For heritage code, where the generation of this header information for every
module is an unreasonable burden, an alternative approach based on compilation
units can be used. A single header can be used to record the description and version
history for all modules contained within a file which is compiled as a unit. In this
case the only requirement for each module is to describe each input/output
parameter (not globals). Although this alternative approach is acceptable for
heritage code, the former approach, with a header for each module, is required for
all new code.

The inclusion of the headers will allow automated tools within the DAAC SSI&T
environment to manipulate the software items and will ease understanding by the
SSI&T team.

6.3 EXAMPLE
line no.

00 geonav(float pos[3],float smat[3][3],float coef[6],float sun[3],

01 int nsta,int ninc,int npix,float xlat[409],float xlon[409],

02 float solz[409],float sola[409],float senz[409],float sena[409])

03/*

(A1 (4 J ko ko kK
05

06 !Description: This subroutine calculates the sensor

Revision A 6-1 October 1996

07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

orientation from the orbit position vector and input values of
attitude offset angles. The calculations assume that the angles
represent the yaw, roll and pitch offsets between the local
vertical reference frame (at the spacecraft position) and the
sensor frame. The outputs are the matrix which represents
the transformation from the geocentric rotating to sensor
frame, and the coefficients which represent the Earth scan
track in the sensor frame. The reference ellipsoid uses an
equatorial radius of 6378.137 km and a flattening factor of
1/298.257 (WGS 1984).05

Input Parameters:

pos|[3] satellite position

coef[6] scan line coefficients

sun[3] unit sun vector in geocentric rotating coordinates
nsta number of first pixel to start with

ninc increment between pixels for computations

npix number of pixels in scan line

'Output Parameters:

xlat[409] latitude values
xlon[409] longitude values
solz[409] solar zenith values
sola[409] solar azimuth values
senz[409] sensor zenith values

sena[409] sensor azimuth values

Input/Output Parameters:

smat[3] [3] sensor orientation matrix
'Revision History:

$LOG: geonav.c,v $

Revision 01.01 1993/10/12 10:12:28

Revision A 6-2

423-16-01

October 1996

423-16-01

39 Z. GREEN (zgreen@harp.gsfc.nasa.gov)

40 Initial delivery of software. Modified to comply with ESDIS
41 standards. It was a breeze.

42

43 Revision 01.00 1993/04/29 17:12:28

44 A. SMITH (asmith@harp.gsfc.nasa.gov)

45 Initial debugged version, based on original FORTRAN 77
46 subroutine developed in 1983 by C. ADAMS of the TELLUS
47 project.

48

49 !Team-unique Header:

50 <Science team puts any thing they want in this portion of prolog>

51 'END***
*/
<code follows here>

The following notes describe how to use the header block, using the above example
as a reference.

Line 00: Name of main procedure, include file or subroutine/ procedure/ function.
If this is not the main procedure or an include file, it should contain the function
statement.

Line 04: Start of prolog. Initial marker can take the following values:

IFXY - contains FORTRAN XY (XY = 77 or 90) executable statements
!C - contains C executable statements

--IADA - contains Ada executable statements

IFXY-INC - FORTRAN XY (XY = 77 or 90) include file

IC-INC - C include file

Alternately, the prolog may use a language-independent set of markers. These
include:

'PROLOG
'PROLOG-INC

Revision A 6-3 October 1996

423-16-01

Line 06: A concise but complete summary of the overall function of the module.
Any references for methods and/or algorithms should be included. Use as many
lines as necessary.

Line 18: Header for input. The word "parameters" in the example is a place holder;

a choice of the words "parameters", "variables", or "arguments" may be used or the
word may be omitted.

Line 19-24: Input parameters, arguments, or variables (not global variables) in the
order they are presented to the module with a short 1-2 line description of the
parameter (and its units where appropriate). Global variables should be described in
the module in which they are declared (i.e., only once).

Line 26: Header for output. The word "parameters" in the example is a place

holder; a choice of the words "parameters", "variables", or "arguments" may be used
or the word may be omitted.

Line 27-32: Output parameters, arguments, or variables (not global variables) in the
order they are contained in the function statement. Global variables should be
described in the module in which they are declared (i.e., only once). Same format as
for input parameters.

Line 34: Header for input/output. The words "lInput/Output" are mandatory, if
there are any such parameters. The word "parameters" in the example is a place

holder; a choice of the words "parameters", "variables", or "arguments" may be used
or the word may be omitted.

Line 35: Parameters, arguments, or variables that serve both as input
parameters and as output parameters (not global variables) in the order they
are contained in the function statement. Global variables should be described
in the module in which they are declared (i.e., only once). Same format as for
input parameters. The automated I&T tools will allow this part of the header
to be omitted.

Line 36: Start of Revision History Log.

Line 37: If you are using an automated tool for revision control, you should insert
any statements required immediately after the Modification History Log Header.

Line 38-47: Each revision shall contain as a minimum the revision number, date,
and a short description of ALL the changes made. For larger teams, the person's
name and their email address are recommended. The first entry shall include the
original author and date of the code. Revisions shall be ordered with the latest first.
[Note: this revision information can be supplemented with more detailed
comments in the code referencing the revision number.]

Revision A 6-4 October 1996

423-16-01

Any revision numbering system relevant to your site and configuration control

mechanism may be used but the "nn.mm" format is recommended, where "mm" is

updated each time a change is made to the module and "nn" is updated when the
function of the module changes or the algorithm/method is changed. [Note: The
release number for the data production software is not related to the revision
numbers on individual modules - the release number scheme should be
determined by the development team. The date associated with a release is more
meaningful than a release number to those outside the development team.]

Line 49: Start of Team-unique Header.

Line 50: Each team may design it's own header section(s). There may be
more than one of these, mixed in with the mandatory header sections of the
prologue. The automated I&T tools will ignore this part of the header.

Line 51: End of source code prolog.
General Notes:

1. The marker may have the format "!marker" or "IMarker". The marker is
case insensitive (e.g., Marker, marker, and MARKER are the same).

2. A team-unique marker does not have to have the phrase "team unique" in
the marker.

3. An Ada prolog starts with "--!" rather than "!".

Revision A 6-5 October 1996

CHO1

423-16-01

This page intentionally left blank.

Revision A 6-6 October 1996

423-16-01

7. SCRIPT LANGUAGE STANDARD
7.1 INTENT

The intent of this standard is to facilitate software portability and to control
costs at the DAAC.

7.2 STANDARDS
7.2.1 Shell Languages

Command language code delivered to the DAACs as part of the science data
production software shall be written using one or more of the following script
languages.

a.) csh,

b.) ksh,

c.) per],

d.) POSIX-compatible shell language,
e.) bourne shell.

Adherence to these standards is mandatory for script command languages
that are used to generate the command language portion of the science data
production software delivered to the DAACs.

The POSIX standard is published in IEEE Std 1003.2-1992.
7.2.2 Shell Names

The following case-independent filename extensions shall be used for all
science software script files delivered to the DAAC as part of the science
software delivery:

a.) cscript.csh

b.) korn script .ksh

c.) perl script .pl or .perl
d.) bourne script .sh

7.3 GUIDELINES
7.3.1 Minimize Number of Script Languages

Command language code delivered to the DAACs as part of the science data
production software from a science team should be written using the smallest
possible number of script languages.

Revision A 7-1 October 1996

423-16-01

7.3.2 Use Efficient Mixture of Compiled and Interpreted Programming Languages

The use of compiled programming language should be maximized and the use of
interpreted script command language should be minimized, in developing
science data production software for delivery to the DAACs. The rationale for this
guideline is efficiency of software execution and adherence to standards for
portability. Compiled code executes more efficiently than interpreted code. There
are formal national standards for the approved compiled programming languages
while there is only one formal national standard, POSIX, for a script language.

Revision A 7-2 October 1996

423-16-01

8. GUIDELINES FOR USE OF MULTIPLE LANGUAGES

This section provides guidance regarding known problems encountered during
Science Software Integration and Test (SSI&T) due to the use of multiple
programming languages.

8.1 FORTRAN 77 AND C INTERFACE

FORCHECK, the FORTRAN 77 standards checker used at the DAAC during SSI&T,
flags a detected problem with FORTRAN 77 code in some instances when the code is
calling C-language external routines. FORCHECK assumes all code including
external code is written in FORTRAN. Certain SDP Toolkit and other EOSDIS Core
System (ECS) functions are written in the C language and allow multiple argument
types for the same argument. The FORTRAN language standard specifies that an
individual argument in a call to a FORTRAN external routine must always be of the
same type and must either be a scalar or an array (but not both) in all instantiations.
Since FORTRAN 77 science code includes multiple calls to external ECS routines
with different argument types for the same argument, FORCHECK flags an ANSI
FORTRAN 77 language standard violation. The FORTRAN 77 code must be written
this way in order to use the ECS routines. In some cases the FORTRAN 77 code calls
intermediate FORTRAN 77 code which in turn calls the C language code, passing
the same arguments. This is also done to be consistent with the ECS C-language
routines.

FORCHECK warnings on this should be ignored. The DAAC should allow different
types for an actual argument in FORTRAN 77 language code and the associated
dummy argument in C language code and any intermediate FORTRAN 77 code.

Revision A 8-1 October 1996

CHO1

423-16-01

This page intentionally left blank.

Revision A 8-2 October 1996

423-16-01

APPENDIX A. ESDIS POLICY REGARDING PROHIBITED FUNCTIONS IN
SCIENCE DATA PRODUCTION SOFTWARE

A.1 GENERAL PRINCIPLES

The general guiding principles behind the prohibited functions will apply to both
scripts and compiled code.

A.1.1 Avoid Interactivity

Since a running Product Generation Executive (PGE) is not connected to any
terminal device (screen, keyboard, mouse, etc.), the PGE should not invoke any
function, routine, or utility that requires such a device. The PGEs: 1) may not write
to standard output (stdout) or standard error (stderr), or read from standard input
(stdin); 2) may not attempt to display anything to the screen (GUIs, prompts,
messages); and 3) may not attempt to read anything from an input device such as a
keyboard or mouse. This necessarily means that a PGE cannot be directly interactive
with a user or operator.

Examples: 1) do not use I/O streams stdin, stdout, or stderr in C; 2) do not use file
handles STDIN, STDOUT, or STDERR in Perl; 3) do not write to unit 6 or *, or read
from unit 5 or *, in FORTRAN 77 or Fortran 90 and 4) do not use unredirected or
unpiped stdin, stdout, or stderr in shell scripts.

A.1.2 Use Process Control Files

All I/O in a PGE must be through the use of files which are defined in the Process
Control File (PCF). This applies to both compiled code and to scripts. The SDP
Toolkit provides tools for both.

A.1.3 No Direct Control of Files

PGEs must not attempt to circumvent the SDP Toolkit in order to manage files or
tile systems directly.

Examples: Do not use chdir(), mkdir(), mv, c¢d, rm, rmdir, chmod, chown
A.1.4 No Direct Control of Processes

PGEs must not attempt to circumvent the SDP Toolkit in order to manage or control
processes.

Examples: Do not use kill, su, wait(), nice, sleep, umask()
A.1.5 No Direct Control of Network

PGEs must not attempt to initiate network connections or transfers directly.

Revision A A-1 October 1996

423-16-01

Examples: Do not use ftp, telnet, rlogin, 1p, socket(), RCP
A.1.6 No Direct Control of Shell

PGEs must not interfere in or otherwise thwart the shell environment in which the
PGEs are running. Environment variables used by the Toolkit (e.g. PGSHOME,
PGSBIN, PGSMSG, PGSLIB, HDFHOME, HDFINGC, etc.) should not be redefined.

The environment variables that are typical in a user shell (e.g. USER, PATH, SHELL,
path, HOSTNAME, MACHINETYPE, SHLVL, PWD, DISPLAY, TERM, etc.) should
not be redefined.

A.2 LANGUAGE-SPECIFIC LISTS

For each language, the prohibited functions include but are not limited to the items
in the following lists. It is impossible to list all possible functions, routines, utilities,
etc. that someday may present a problem to the ECS.

A2.1 C Language Prohibited Functions
abort()
access()
alarm()
Any use of file stream stdin
Any use of file stream stdout
Any use of file stream stderr
assert ()
atexit()
cfgetispeed()
cfgetospeed()
cfsetispeed()
cfsetospeed()
chdir()
chmod()
chown()
clearerr()
close()
closedir()
creat()
ctermid()
dup()
dup2()
exec()
_exit()
fclose()
fentl()
fdopen()
fileno()
fopen()

Revision A A-2 October 1996

CHO1

Revision A

fork()
fpathconf()
freopen()
fstat()
getchar()
getcwd()
getegid()
geteuid()
getgid()
getgrgid()
getgrnamy()
getgroups()
getlogin()
getpgrp()
getpid()
getppid()
getpwnamy()
getpwuid()
gets()
getuid()
isatty()
kill()
localeconv()
link()
Iseek()
mkdir()
mkfifo()
opendir()
open()
pathconf()
pause()
pipe()
printf()
putchar()
puts()
read()
readdir()
remove()
rename()
rewind()
rewinddir()
rmdir()
scanf()
setbuf()
setgid()
setgrgid()

A-3

423-16-01

October 1996

A.2.2 FORTRAN (77 & 90) Language Prohibited Functions.

Revision A

setlocale()
setpgid()
setsid()
setuid()
sig...()
sleep()
stat()
system()
tc...()
tmpfile()
tmpnam()
ttyname()
uname()
unlink()
umask()
utime()
vprintf()
uname()
wait()
waitpid()
write()

Any use of output to unit 6 or *
Any use of input from unit 5 or *

CLOSE()

OPEN()

PRINT * ...
PXFACCESS()
PXFALARMY()
PXFCFGETISPEED()
PXFCFGETOSPEED()
PXFCFSETISPEED()
PXFCFSETOSPEED()
PXFCHMOD()
PXFCHOWN()
PXFCLOSE()
PXFCLOSEDIR()
PXFCNTL()
PXFCREATY()
PXFCTERMID()
PXFDUP()
PXFDUP2()
PXFCHDIR()
PXFEXEC...()

A-4

423-16-01

October 1996

Revision A

PXFEXIT()
PXFFASTEXIT()
PXFFCNTL()
PXFFDOPEN()
PXFFILENO()
PXFFORK()
PXFFPATHCONF()
PXFFSTAT()
PXFGETCWD()
PXFGETEGID()
PXFGETEUID()
PXFGETGID()
PXFGETGRGID()
PXFGETGRNAM()
PXFGETGROUPS()
PXFGETLOGIN()
PXFGETPGRP()
PXFGETPID()
PXFGETPPID()
PXFGETPWNAM()
PXFGETPWUID()
PXFGETUID()
PXFIS...()
PXFISATTY()
PXFKILL()
PXFLINK()
PXFLSEEK()
PXFMKDIR()
PXFMKFIFO()
PXFOPEN()
PXFOPENDIR()
PXFPAUSE()
PXFPATHCONF()
PXFPIPE()
PXFPOSIXIO()
PXFREAD()
PXFREADDIR()
PXFRENAME()
PXFRMDIR()
PXFREWINDDIR()
PXFSETGID()
PXFSETPGID()
PXFSETSID()
PXFSETUID()
PXFSIG...()
PXFSLEEP()

A-5

423-16-01

October 1996

423-16-01

PXFSTAT()
PXFTC...()
PXFTTYNAME()
PXFUMASK()
PXFUNAME()
PXFUNLINK()
PXFUTIME()
PXFWAIT()
PXFWAITPID()
PXFWRITE()
READ * ...
READ(*,...)
READG,...)
WRITEC(,...)
WRITE(S,...)

Use of the optional STOP expressions following the STOP statement, whether

the optional expressions is a number or a character constant

A.2.3 Bourne, C, Korn, and Perl Shell Prohibited Functions and Utilities.

Any use of standard input (stdin)
Any use of standard output (stdout)
Any use of standard error (stderr)
at, atq, atrm

od

chgrp

chmod

chown

cp

find

ftp

kill

In

Ip, 1pr, lpstat

mail (and any related functions)
mkdir

nice

printf

rcp

read

rlogin

rm

rmdir

rsh

script

sleep

su

telnet

A-6 October 1996

CHO1

touch
umask
write

A.2.4 Perl-Specific Prohibited Functions.

Revision A

accept()
alarm()
Any use of file handle STDIN

Any use of file handle STDOUT
Any use of file handle STDERR

bind()
chdir()
closedir()
connect()
chmod()
chown()
chroot()
dbmclose()
dbmopen()
die

dump()
exec()

fentl()
fileno()
flock()
fork()
getgrgid()
getlogin()
getpeername()
getpgrp()
getppid()
getpriority()
getpwuid()
getsockname()
getsockopt()
link()
listen()
kill()
mkdir()
msgctl()
msgget()
msgsnd()
opendir()
readdir()
readlink()

A-7

423-16-01

October 1996

423-16-01

recv()
rename()
rewinddir()
rmdir()
seekdir()
setpgrp()
setpriority()
setsockopt()
semctl()
semget()
semop()
send()
shmctl()
shmget()
shmread()
shmwrite()
shutdown()
sleep()
socket()
socketpair()
symlink()
syscall()
system()
telldir()
unlink()
umask()
utime()
wait()
waitpid()
warn()

Revision A A-8 October 1996

423-16-01

APPENDIX B. ESDIS POLICY FOR SOFTWARE STANDARDS CHANGES AND
WAIVERS

B.1 SCOPE

This discussion is limited to the ESDIS Software Standards and Guidelines for
Science Team SCFs and for Science team software targeted for the DAAC. These
standards are documented in this document. This policy does not apply to any
documents that describe good programming practices (corollary information) or
other recommended practices. However, guidelines (including standards) in this
document are controlled by the ESDIS Project Configuration Control Board (CCB).

There are two policy categories when considering changes or exceptions to the ESDIS
Standards. These categories are: permanent changes to the Standards, and
individual exceptions to the Standards via waivers. These are discussed separately.

B.1.1 Standards Changes

These may be suggested, not requested, (i.e. no formal response to the originating
party is required) by any involved or associated party. The Standards Committee
(science team, DAAC, ECS contractor, and ESDIS personnel) will: 1) hold a caucus to
discuss the suggestion; 2) write up the changes to the Standards Document; 3)
circulate these changes within the ESDIS Standards Committee, for concurrence;
and then 4) transfer the revised document recommendation to the formal ESDIS
CCB for final approval.

All CCB approved changes to the Standards Document will then be broadcast to EOS
Instrument, Interdisciplinary, and DAAC teams. Changes to the Standards
Document will be made by the ESDIS Project Configuration Management Officer
using change bars and revision markings within the body of the Standards
Document. Reasons for Standards changes will be disseminated to the EOS teams,
but will not be included in the Standards Document.

The rationale for Standards and/or Guidelines changes can include: code
maintenance, portability, reusability, ease of creation, heritage considerations, and
common coding practices.

The following definitions have been used for the above terms:
a.) Maintenance: long term viability of the code (20 years). This applies to

code headers, documentation, understandability, modularity, etc.

b.) Portability: ease of moving code to new platforms. This applies to the
compatibility of languages and coding techniques across all computer
architectures.

c.) Reusability: the ability of others to use and understand the code as written.
This applies more to the calling sequence, parameter passing, and utility

Revision A B-1 October 1996

423-16-01

and library aspects of the code. This term also considers the quality of the
code documentation.

d.) Ease of creation: industry accepted coding practices including macros,
make files, handling of machine dependencies, debugging, profiling, and
other integrated development environment (IDE) aspects.

e.) Heritage considerations: allowing old coding practices in previously
written code that has been thoroughly debugged, exercised, in wide usage,
and would create redundant work to re-invent.

f.) Common coding practices: techniques that the programming community
as a whole utilizes and are therefore assumed to be understandable by all
programmers.

Note that heritage code will be brought up to standards before delivery to the DAAC.
Exceptions to this policy will be covered as temporary waivers to the Standards.

B.1.2 Individual Waivers to the Standard

Waivers are defined to be temporary exceptions to the Standards Document and are
an agreement between ESDIS and an individual. Depending upon the nature of the
waiver, it may apply to the entire EOSDIS community. All waivers will have an
expiration date. Criteria for granting or renewing a waiver include feasibility in the
ECS environment and cost impact.

The procedure for waivers is for the request to be submitted to an ESDIS Science
Software Manager (SSM). The SSM will acknowledge the request and give an
expected time frame for an official response to the waiver request. The ESDIS
Standards Committee will convene to create an unofficial acknowledgment to the
requester indicating that the request is reasonable or not, pro's and con's discussing
the merits of the request, and a proposed date at which the response will be officially
approved. This is necessary to give a timely response to the requester, who can then
proceed with accommodating the proposed waiver results.

All waivers will need approval of the ESDIS Standards Committee and, if
appropriate, of the ESDIS Data Processing Manager before becoming official, but will
not need ESDIS CCB approval.

A waiver rejection appeal process can be initiated by the involvement of a third
party, at the discretion of the ESDIS Data Processing Manager, to further champion
the waiver. Third parties may be from any of the ESDIS associated entities, such as a
DAAC, ECS contractor, instrument team, ECS component (SDPS, CSMS, etc.),
spacecraft platform developer, or EOSDIS working group. Waiver appeal approval
will be determined by a consensus among the instrument teams and DAAC
representatives, heavily weighted with the opinion of the ESDIS Data Processing
Manager.

Criteria for waivers will emphasize the short duration for which a waiver is to be

Revision A B-2 October 1996

423-16-01

granted. The granting or renewal of a waiver would cover only specified deliveries
with the requirement that the code would be brought into standards compliance by a
specified date or milestone.

Waivers are renewable as long as the instrument team continues to need the waiver
and the DAAC can continue to support the exception to the standards.

A list of the current waivers may be obtained from an ESDIS SSM.

Revision A B-3 October 1996

423-16-01

This page intentionally left blank.

Revision A B-4 October 1996

API
CCB
DAAC
DPFT
ECS
EOS
EOSDIS
ESDIS
IDE
I/O
PCF
PGE
SCF
SDP
SS1&T

SSM

Revision A

ACRONYMS AND ABBREVIATIONS

Application Program Interface
Configuration Control Board
Distributed Active Archive Center
Data Processing Focus Team

EOSDIS Core System

Earth Observing System

EOS Data and Information System
Earth Science Data and Information System
Integrated Development Environment
Input/Output

Process Control File

Product Generation Executive

Science Computing Facility

Science Data Production

Science Software Integration and Test

Science Software Manager

AB-1

423-16-01

October 1996

423-16-01

This page intentionally left blank.

Revision A AB-2 October 1996

